

# **Dryer Systems**

# Warmregenerierende Adsorptionstrockner

**Ultradryer HRE 0375 - 13600** 

#### HERAUSRAGENDE MERKMALE

- 19 Größen, angepasst an die Liefermengen der Kompressoren
- Energieeffiziente Regeneration (Desorption) im Gegenstrom
- In allen Klimazonen einsetzbar dank Kühlung durch geringen Teilstrom der trockenen Luft
- Standard Drucktaupunkt -40°C, im Einzelfall -70°C möglich
- Robustes Design mit geschweißten Stahlbehältern und geflanschten Rohrleitungen
- Servicefreundliche Ausführung der Absperrklappen und Druckentlastungsventile für schnellen Austausch der Verschleißteile
- Robuste, leistungsfähige SPS der neuesten Generation, für die Service und Support auch über das nächste Jahrzehnt hinaus sichergestellt ist
- Touch Panel mit hohem Bedienkomfort; Das Hauptmenü zeigt eine Anlagenübersicht mit den relevanten Betriebsdaten wie Druck, Temperatur, Zyklus der Behälter etc.
- Umfangreiches Optionspaket: Taupunktabhängige Kapazitätssteuerung, Anfahrautomatik, silikon- und trennmittelfrei, Umgehungsleitung (Bypass), Filteranbau etc.
- Passende Hochleistungsfilter als Vor- und Nachfilter (Option) gewährleisten einen niedrigen Differenzdruck der Gesamtanlage und damit geringe Betriebskosten



**HRE 2750** 

#### **INDUSTRIEN**



• Chemie- und Elektroindustrie



Maschinen- und Anlagenbau



Automobilindustrie

**Donaldson Filtration Deutschland GmbH** 

Büssingstr. 1 D-42781 Haan

Tel.: +49 (0) 2129 569 0 Fax: +49 (0) 2129 569 100 E-Mail: CAP-de@donaldson.com Web: www.donaldson.com



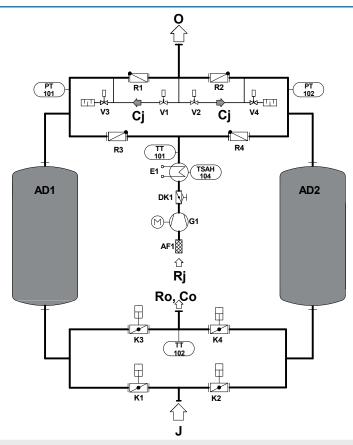
#### **PRODUKTBESCHREIBUNG**

Die extern warmregenerierenden Adsorptionstrockner Typ HRE 0375-13600 arbeiten nach dem dynamischen Adsorptionsprinzip. Das bedeutet, daß die feuchte Druckluft eine Trockenmittelschicht durchströmt. Während des Durchströmens wird der Druckluft die Feuchte entzogen. Da die Aufnahmekapazität des Trockenmittels begrenzt ist, muß vor der vollständigen Sättigung eine Umschaltung des Strömungsweges erfolgen. Durch zwei in Wechselfunktion arbeitende Adsorptionsbehälter (Adsorber AD1 + AD2) wird die ständige Versorgung der Verbraucher mit getrockneter Druckluft gewährleistet. Ein Adsorber steht immer für die Trocknung der Druckluft zur Verfügung. Der zweite Adsorber wird gleichzeitig wieder aktiviert. Die Aktivierungs- bzw. Regenerationszeit ist stets kürzer als die Beladungszeit des Betriebsadsorbers. Die Regeneration des mit Feuchtigkeit gesättigten Trockenmittels erfolgt in zwei Schritten:

- Desorption im Gegenstrom zur Adsorptionsrichtung mit extern erhitzter Ventilatorluft
- Kühlung des erhitzten Trockenmittels mit einem entspanntem Teilstrom der getrockneten Druckluft

# Typische Anwendungen für die Adsorptionstrockner HRE sind:

# • Zentrale Druckluftaufbereitung:


Erzeugung von trockener, ölfreier und partikelfreier Druckluft (mit Option Vor- und Nachfilter)

### Endstellenanwendungen:

Trocknung und Aufbereitung von Steuerungs-/ Instrumenten- und Prozeßluft

#### Automobilindustrie:

Aufbereitung von Druckluft für Lackieranwendungen



- J: Feuchtluft Eintritt
- O: Trockenluft Austritt
- Rj: Desorptionsluft Eintritt
- Ro: Desorptionsluft Austritt
- Cj: Kühlluft Eintritt
- Co: Kühlluft Austritt

# **PRODUKTSPEZIFIKATIONEN**

| Merkmale:                                                                                                                                                          | Nutzen:                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19 Größen, angepaßt an die Liefermengen<br>der Kompressoren                                                                                                        | Maßgeschneiderte Lösungen, bezogen auf den exakten Kundenbedarf; keine Überdimensionierung der Kompressoren nötig, geringstmöglicher Regenerationsluftbedarf des Trockners                                                                                                            |
| Energieeffiziente Desorption im Gegenstrom zur Adsorption                                                                                                          | Geringe Desorptionstemperatur, geringer Energieverbrauch                                                                                                                                                                                                                              |
| Kühlung des erhitzten Trockenmittels<br>durch geringen Teilstrom der trockenen<br>Luft                                                                             | Unabhängig von Umgebungstemperatur und Feuchte, in tropischem Klima einsetzbar, ggf. auch sehr niedrige Taupunkte (DTP -70°C) realisierbar                                                                                                                                            |
| Geschweißte Stahlbehälter und geflanschte Rohrleitungen                                                                                                            | Robustes, wartungsfreundliches Design                                                                                                                                                                                                                                                 |
| Gute Zugänglichkeit aller Bauteile. Servicefreundliche Ausführung der Druck- entlastungsventile und Absperrklappen (zweiteilige Gehäuse)                           | Schneller Austausch der Verschleißteile gewährleistet geringe<br>Service- und Wartungskosten und kurze Stillstandzeiten                                                                                                                                                               |
| Speicherprogrammierbare Steuerung<br>Simatic S7-1200                                                                                                               | Robuste, leistungsfähige SPS der neuesten Generation.<br>Maßgeschneiderte Kundenlösungen möglich                                                                                                                                                                                      |
| Touch Panel KTP700                                                                                                                                                 | Hoher Bedienkomfort dank selbsterklärender Menüführung. Alle Betriebsdaten auf einen Blick. Anzeige des aktuellen Taupunkts (Option), des Funktionsstatus sowie von Alarm- und Servicemeldungen auf dem Hauptmenü gewährleistet eine hohe Betriebssicherheit des Adsorptionstrockners |
| Umfangreiches Optionspaket:<br>Beladungsabhängige Steuerung, Anfahr-<br>automatik, silikon- und trennmittelfrei, Um-<br>gehungsleitung (Bypass), Filteranbau, etc. | Flexibilität in der Anwendung; durchdachtes Optionspaket für wirtschaftliche und sichere Systemeinbindung in das Druckluftnetz                                                                                                                                                        |
| Passende Hochleistungsfilter stehen als Vor- und Nachfilter zur Verfügung (Option)                                                                                 | Niedriger Differenzdruck der Gesamtanlage und damit geringe<br>Betriebskosten                                                                                                                                                                                                         |
| Ultraconomy Version inklusive taupunkt-<br>abhängiger Kapazitätssteuerung (Option)                                                                                 | Einsparung von Energie- und Betriebskosten durch Anpassung des Adsorptionszyklus auf die gegenwärtigen Betriebsbedingungen                                                                                                                                                            |

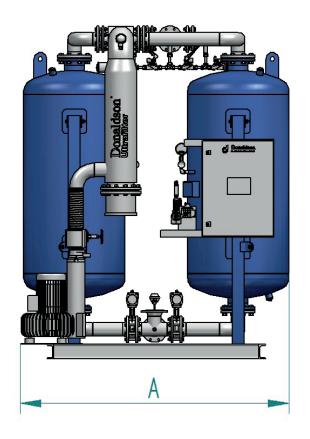
| Technische Daten                    |                                                                         |  |  |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------|--|--|--|--|--|
| Adsorptionsbehälter                 |                                                                         |  |  |  |  |  |
| Werkstoffe:                         | C-Stähle                                                                |  |  |  |  |  |
| Auslegungsdaten:                    | 11 bar (ü), 230°C für 0375 - 2750<br>10 bar (ü), 200°C für 3500 - 13600 |  |  |  |  |  |
| Auslegung, Herstellung und Prüfung: | gemäß AD 2000                                                           |  |  |  |  |  |
| Abnahme:                            | gemäß DGRL 2014/ 68/ EU                                                 |  |  |  |  |  |
| Strömungsverteiler:                 | Edelstahl                                                               |  |  |  |  |  |
| Rohrleitungen                       |                                                                         |  |  |  |  |  |
| Druckstufe:                         | PN 16                                                                   |  |  |  |  |  |
| Werkstoffe:                         | C-Stähle                                                                |  |  |  |  |  |
| Auslegung, Herstellung und Prüfung: | gemäß AD 2000                                                           |  |  |  |  |  |
| Abnahme:                            | gemäß DGRL 2014/ 68/ EU                                                 |  |  |  |  |  |

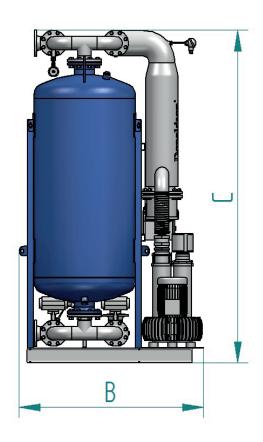
## **PRODUKTSPEZIFIKATIONEN**

| Standardbedingungen                     |                                          |                                                    |  |  |  |
|-----------------------------------------|------------------------------------------|----------------------------------------------------|--|--|--|
| Drucktaupunkt:                          | -40°C                                    | Auslegungen für abweichende                        |  |  |  |
| Betriebsdruck:                          | 7 bar (ü)                                |                                                    |  |  |  |
| Eintrittstemperatur:                    | +35°C                                    | Bedingungen mit<br>Korrekturfaktor f gemäß Tabelle |  |  |  |
| Eintrittsfeuchte:                       | gesättigt                                | unter "Auslegung"                                  |  |  |  |
| Durchschnittlicher Kühlluftverbrauch:   | ca. 2% bezogen auf $\dot{V}_{nom}$       |                                                    |  |  |  |
| Einsatzgrenzen                          |                                          |                                                    |  |  |  |
| Medium:                                 | Druckluft/ Stickstoff                    |                                                    |  |  |  |
| Betriebsdruck:                          | 4 - 10 bar (ü)                           | Auslegungen für                                    |  |  |  |
| Eintrittstemperatur:                    | 5 - 40°C                                 | Betriebsbedingungen außerhalb                      |  |  |  |
| Umgebungstemperatur:                    | 5 - 40°C                                 | der angegebenen Einsatzgrenzen<br>auf Anfrage      |  |  |  |
| Max. Ventilatoransaugung:               | 35°C/ 45% r. F. bis 30°C/ 60% r. F.      |                                                    |  |  |  |
| Aufstellung:                            | innen                                    |                                                    |  |  |  |
| Steuerung (Standardausführung)          |                                          |                                                    |  |  |  |
| Ausführung:                             | gemäss VDE/ IEC                          |                                                    |  |  |  |
| Einspeisung:                            | 3 Phasen / 400V - 50 Hz                  |                                                    |  |  |  |
| Steuerspannung:                         | 24 VDC / 230 VAC - 50 Hz                 |                                                    |  |  |  |
| SPS:                                    | Siemens S7-1200 mit CPU 1214C            |                                                    |  |  |  |
| Textdisplay:                            | Siemens KTP 700                          | Spezielle Ausführungen<br>auf Anfrage              |  |  |  |
| Schutzart:                              | IP 54, gemäss IEC 529                    |                                                    |  |  |  |
| Steuerschrank:                          | Stahlblech, Pulverbeschichtung, RAL 7035 |                                                    |  |  |  |
| Potentialfreier Sammelstörmeldekontakt: | inkl.                                    |                                                    |  |  |  |
| Hauptschalter:                          | inkl.                                    |                                                    |  |  |  |

## **AUSLEGUNG**

| Тур                   | Druck-<br>taupunkt<br>(DTP) | Eintritts-<br>temperatur | Betriebsüberdruck (bar) |      |      |      |      |      |      |
|-----------------------|-----------------------------|--------------------------|-------------------------|------|------|------|------|------|------|
|                       |                             |                          | 4                       | 5    | 6    | 7    | 8    | 9    | 10   |
|                       |                             | 30°C                     | 0,72                    | 0,92 | 1,09 | 1,25 | 1,36 | 1,45 | 1,51 |
| HRE                   | -40°C                       | 35°C                     | 0,55                    | 0,70 | 0,86 | 1,00 | 1,12 | 1,25 | 1,37 |
|                       |                             | 40°C                     | 0,33                    | 0,45 | 0,58 | 0,71 | 0,82 | 0,92 | 1,03 |
| Korrekturfaktoren (f) |                             |                          |                         |      |      |      |      |      |      |

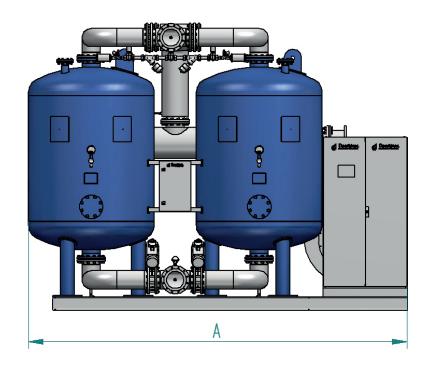

# Beispiel:

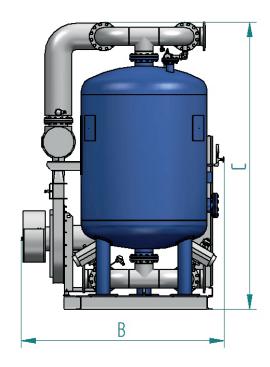

 $\dot{V}_{\text{nom}}$  = 3990 m³/h, Eintrittstemperatur = 40°C, Betriebsdruck = 6 bar (ü), DTP = -40°C

$$\dot{V}_{korr} = \frac{\dot{V}_{nom}}{f} = \frac{3990 \text{ m}^3/\text{h}}{0.58} = 6879 \text{ m}^3/\text{h}$$

Berechnete Trocknergröße: Typ HRE 7000

# **ABMESSUNGEN**




| Тур  | V <sub>nom</sub> bei<br>Typ 7 bar (ü) |      | Anschlüsse         | Installierte<br>Leistung | Abmessungen |         |         | Gewicht |
|------|---------------------------------------|------|--------------------|--------------------------|-------------|---------|---------|---------|
|      | m³/h                                  | cfm  | PN 16, DIN EN 1092 | kW                       | A<br>mm     | B<br>mm | C<br>mm | kg      |
| 0375 | 375                                   | 220  | DN 50              | 7,6                      | 1460        | 990     | 2140    | 760     |
| 0550 | 550                                   | 325  | DN 50              | 11,2                     | 1520        | 1120    | 2340    | 920     |
| 0650 | 650                                   | 385  | DN 50              | 11,2                     | 1540        | 1140    | 2260    | 1100    |
| 0850 | 850                                   | 500  | DN 50              | 14,2                     | 1580        | 1210    | 2330    | 1210    |
| 1000 | 1000                                  | 590  | DN 80              | 14,2                     | 1640        | 1170    | 2460    | 1400    |
| 1350 | 1350                                  | 800  | DN 80              | 20,0                     | 1830        | 1290    | 2580    | 1500    |
| 1650 | 1650                                  | 975  | DN 80              | 24,0                     | 1850        | 1410    | 2630    | 1830    |
| 1950 | 1950                                  | 1150 | DN 100             | 32,5                     | 2030        | 1450    | 2720    | 2130    |
| 2250 | 2250                                  | 1330 | DN 100             | 32,5                     | 2100        | 1480    | 2740    | 2280    |
| 2750 | 2750                                  | 1620 | DN 100             | 38,0                     | 2250        | 1550    | 2790    | 2680    |

 $<sup>\</sup>dot{V}_{nom}$  in m³/h bezogen auf Verdichteransaugung bei 20°C und 1 bar (a), einem Betriebsdruck von 7 bar (ü) und einer Drucklufteintrittstemperatur von 35°C (gesättigt)

# **ABMESSUNGEN**





| Тур   | V <sub>nom</sub> bei<br>7 bar (ü) |      | Anschlüsse         | Installierte<br>Leistung | Abmessungen |         |         | Gewicht |
|-------|-----------------------------------|------|--------------------|--------------------------|-------------|---------|---------|---------|
|       | m³/h                              | cfm  | PN 16, DIN EN 1092 | kW                       | A<br>mm     | B<br>mm | C<br>mm | kg      |
| 3500  | 3500                              | 2065 | DN 100             | 44,5                     | 3350        | 1800    | 2860    | 3350    |
| 4000  | 4000                              | 2360 | DN 150             | 52,5                     | 3450        | 1820    | 2980    | 3990    |
| 5000  | 5000                              | 2945 | DN 150             | 71,0                     | 3770        | 1920    | 3110    | 5000    |
| 6000  | 6000                              | 3535 | DN 150             | 86,0                     | 3910        | 2070    | 3210    | 6200    |
| 7000  | 7000                              | 4125 | DN 150             | 95,0                     | 4100        | 2190    | 3270    | 6700    |
| 8750  | 8750                              | 5155 | DN 200             | 115,0                    | 4520        | 2430    | 3420    | 8470    |
| 10500 | 10500                             | 6185 | DN 200             | 135,0                    | 4780        | 2600    | 3310    | 11200   |
| 11500 | 11500                             | 6770 | DN 200             | 153,0                    | 4970        | 2750    | 3350    | 12000   |
| 13600 | 13600                             | 8010 | DN 200             | 177,5                    | 5280        | 2980    | 3380    | 14000   |

 $<sup>\</sup>dot{V}_{nom}$  in m³/h bezogen auf Verdichteransaugung bei 20°C und 1 bar (a), einem Betriebsdruck von 7 bar (ü) und einer Drucklufteintrittstemperatur von 35°C (gesättigt)