BURAN REFRIGERATION COMPRESSED AIR DRYER

UltraPleat™ Technology
Why is Compressed Air processed?
Compressed air is an indispensable source of operating and processing power in all areas of industrial and technical production. The compressed air is generated by raising the pressure of large volumes of ambient air. Usually this air contains harmful substances, such as dirt particles and moisture in the form of water vapour. The water vapour condenses and can lead to operational breakdowns and considerable but avoidable costs. To prevent production downtimes compressed air must be clean, dry and oil-free.

How the Buran functions
The compressed air is being fed into the dryer and being pre-cooled in the air-to-air heat exchanger by the outgoing cold compressed air. The pre-cooled air then passes through the refrigerant-to-air heat exchanger where it is being further cooled down to the required pressure dewpoint. The moisture in the compressed air condenses out and gathers and discharges automatically. Finally, the cold discharged air is being reheated by the incoming compressed air. This saves energy and prevents any moisture forming beyond the dryer in the compressed air system. The cooling capacity of the refrigeration cycle is being controlled by a hot gas bypass, which will assure secure functioning even during partial loading.

Buran Refrigeration Compressed Air Dryers
The refrigeration compressed air dryers of the Buran range, dry the air to prevent condensation and corrosion damage. The dryers in a robust metal housing are equipped with an integrated pre- and post filter inclusive electronic level controlled condensate drain and a dewpoint indicator. The aluminium heat exchanger includes three functions in one: air-to-air heat exchanger, refrigerant-to-air heat exchanger and electronic level controlled condensate drain. Hereby an especially compact design is achieved.
Low Pressure Losses

Efficient and Economical
The efficiency of the outmost compact and space-saving design is shown by the significant reduction of the differential pressure. Only a 400 mbar lower differential pressure with regard to 8,000 operating hours at a flow rate of 850 m³/h will already save 2,300 Euro per year (7 bar mains pressure, 90 kW of installed capacity, 8 Eurocent/kWh). This example shows that an investment into the optimization of the compressed-air system amortises itself within a short time.

Energy Cost Savings through Reduction of Differential Pressure

A decrease of differential pressure by only 400 mbar saves 2,300 EUR per year. (with 8,000 operating hours/year, 7 bar mains system pressure, 90 kW installed capacity and 0.08 Euro/kWh)

Savings with 400 mbar
Savings with 300 mbar
Savings with 200 mbar

Clear, easily visible Control Display
The user-friendly control panel allows for the monitoring of the operating status at a glance:
- The dewpoint is clearly displayed with a 10 point LED indicator
- Easy LED-Display for the operating mode, an alarm and the function of the fan
- Adjustable dewpoint alarm
- Service display informs automatically about the forthcoming filter replacement

Easy Handling
The robust Buran refrigeration compressed air dryers stand out due to the easy handling and ease of maintenance:
- Space saving design, easy installation. No additional pipe installation of pre- and post-filter required.*
- All connections are accessible from one side (compressed air in- and outlet, electrical connection, condensate drain and inspection drain control)
- Good accessibility of the main components
- Reduced maintenance effort *(Buran AB series)
Technical Data

Buran AB series with integrated pre- and post-filters

<table>
<thead>
<tr>
<th>Type</th>
<th>Volume flow</th>
<th>Differential pressure</th>
<th>Power supply</th>
<th>Power consumption</th>
<th>Cooling air requirement</th>
<th>Air connection</th>
<th>Weight</th>
<th>Dimensions mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC 0020 AB</td>
<td>20</td>
<td>0,33</td>
<td>230/1-150-60</td>
<td>0,14</td>
<td>200</td>
<td>G ¼”</td>
<td>30</td>
<td>455 645 410</td>
</tr>
<tr>
<td>DC 0035 AB</td>
<td>35</td>
<td>0,58</td>
<td>230/1-150-60</td>
<td>0,17</td>
<td>200</td>
<td>G ¼”</td>
<td>31</td>
<td>455 645 410</td>
</tr>
<tr>
<td>DC 0050 AB</td>
<td>50</td>
<td>0,83</td>
<td>230/1-150-60</td>
<td>0,19</td>
<td>300</td>
<td>G ¼”</td>
<td>33</td>
<td>455 645 410</td>
</tr>
<tr>
<td>DC 0065 AB</td>
<td>65</td>
<td>1,08</td>
<td>230/1-150-60</td>
<td>0,24</td>
<td>300</td>
<td>G ¼”</td>
<td>36</td>
<td>455 645 410</td>
</tr>
<tr>
<td>DC 0085 AB</td>
<td>85</td>
<td>1,42</td>
<td>230/1-150-60</td>
<td>0,28</td>
<td>300</td>
<td>G ¼”</td>
<td>37</td>
<td>455 645 410</td>
</tr>
<tr>
<td>DC 0105 AB</td>
<td>105</td>
<td>1,75</td>
<td>230/1-150-60</td>
<td>0,28</td>
<td>300</td>
<td>G ¼”</td>
<td>37</td>
<td>455 645 410</td>
</tr>
<tr>
<td>DC 0125 AB</td>
<td>125</td>
<td>2,08</td>
<td>230/1-150-60</td>
<td>0,45</td>
<td>300</td>
<td>G ¼”</td>
<td>38</td>
<td>455 645 410</td>
</tr>
<tr>
<td>DC 0150 AB</td>
<td>150</td>
<td>2,50</td>
<td>230/1-150-60</td>
<td>0,47</td>
<td>300</td>
<td>G ⅛”</td>
<td>63</td>
<td>600 870 590</td>
</tr>
<tr>
<td>DC 0180 AB</td>
<td>180</td>
<td>3,00</td>
<td>230/1-150-60</td>
<td>0,68</td>
<td>380</td>
<td>G ⅛”</td>
<td>65</td>
<td>600 870 590</td>
</tr>
<tr>
<td>DC 0225 AB</td>
<td>225</td>
<td>3,75</td>
<td>230/1-150-60</td>
<td>0,76</td>
<td>380</td>
<td>G ⅛”</td>
<td>76</td>
<td>600 870 590</td>
</tr>
<tr>
<td>DC 0300 AB</td>
<td>300</td>
<td>5,00</td>
<td>230/1-150-60</td>
<td>0,71</td>
<td>450</td>
<td>G ⅛”</td>
<td>76</td>
<td>600 870 590</td>
</tr>
<tr>
<td>DC 0380 AB</td>
<td>380</td>
<td>6,00</td>
<td>230/1-150-60</td>
<td>0,89</td>
<td>450</td>
<td>G ⅛”</td>
<td>76</td>
<td>600 870 590</td>
</tr>
<tr>
<td>DC 0450 AB</td>
<td>450</td>
<td>7,50</td>
<td>230/1-150-60</td>
<td>0,91</td>
<td>450</td>
<td>G ⅛”</td>
<td>143</td>
<td>800 1055 920</td>
</tr>
<tr>
<td>DC 0590 AB</td>
<td>550</td>
<td>9,17</td>
<td>230/1-150-60</td>
<td>1,11</td>
<td>1900</td>
<td>G 2”</td>
<td>152</td>
<td>800 1055 920</td>
</tr>
<tr>
<td>DC 0650 AB</td>
<td>650</td>
<td>10,83</td>
<td>230/1-150-60</td>
<td>1,40</td>
<td>1900</td>
<td>G 2”</td>
<td>159</td>
<td>800 1055 920</td>
</tr>
<tr>
<td>DC 0750 AB</td>
<td>750</td>
<td>12,50</td>
<td>230/1-150-60</td>
<td>1,34</td>
<td>2200</td>
<td>G 2”</td>
<td>175</td>
<td>800 1055 920</td>
</tr>
<tr>
<td>DC 0850 AB</td>
<td>850</td>
<td>14,17</td>
<td>230/1-150-60</td>
<td>1,70</td>
<td>3300</td>
<td>G 2”</td>
<td>192</td>
<td>800 1055 920</td>
</tr>
</tbody>
</table>

Buran AES series with energy-saving mode, without integrated filters

<table>
<thead>
<tr>
<th>Type</th>
<th>Volume flow</th>
<th>Differential pressure</th>
<th>Power supply</th>
<th>Power consumption</th>
<th>Cooling air requirement</th>
<th>Air connection</th>
<th>Weight</th>
<th>Dimensions mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC 0590 AES</td>
<td>550</td>
<td>9,17</td>
<td>230/1-150-60</td>
<td>1,11</td>
<td>1900</td>
<td>G 2”</td>
<td>122</td>
<td>645 1055 920</td>
</tr>
<tr>
<td>DC 0650 AES</td>
<td>650</td>
<td>10,83</td>
<td>230/1-150-60</td>
<td>1,40</td>
<td>1900</td>
<td>G 2”</td>
<td>123</td>
<td>645 1055 920</td>
</tr>
<tr>
<td>DC 0750 AES</td>
<td>750</td>
<td>12,50</td>
<td>230/1-150-60</td>
<td>1,34</td>
<td>2500</td>
<td>G 2”</td>
<td>150</td>
<td>645 1055 920</td>
</tr>
<tr>
<td>DC 0850 AES</td>
<td>850</td>
<td>14,17</td>
<td>230/1-150-60</td>
<td>1,70</td>
<td>3300</td>
<td>G 2”</td>
<td>160</td>
<td>645 1055 920</td>
</tr>
<tr>
<td>DC 1000 AES</td>
<td>1000</td>
<td>16,67</td>
<td>230/1-150-60</td>
<td>1,85</td>
<td>3300</td>
<td>G 2”</td>
<td>170</td>
<td>645 1055 920</td>
</tr>
<tr>
<td>DC 1175 AES</td>
<td>1175</td>
<td>19,58</td>
<td>400/3-150-60</td>
<td>2,33</td>
<td>3300</td>
<td>G 2”</td>
<td>180</td>
<td>645 1055 920</td>
</tr>
</tbody>
</table>

Also available in water cooled version (without energy-saving mode, without integrated filters). Dimensions & connections differ from AES-Version.

Volume flow referred to the suction status of the air compressor (+20 °C, 1 bar), with compressed air inlet temperature 35 °C, operating overpressure 7 bar(g), ambient temperature 25 °C, pressure dewpoint +3 °C, measured at dryer outlet in accordance with ISO 7183, power consumption at ambient temperature +25 °C, permitted inlet temperature: max. 70 °C, Permitted ambient temperature: min. +2 °C – max. 50 °C, max. operating pressure: DC 0020 AB to DC 0065 AB 16 bar, DC 0105 AB to DC 0850 AB and DC 0550 AES to DC 1175 AES 14 bar, higher pressure on request. Protection class IP 22, water cooled versions deviant. Noise level: dB(A) <70.

Working overpressure

<table>
<thead>
<tr>
<th>Factor</th>
<th>bar (g)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_p</td>
<td>0,49</td>
<td>0,66</td>
<td>0,77</td>
<td>0,86</td>
<td>0,93</td>
<td>1,00</td>
<td>1,05</td>
<td>1,10</td>
<td>1,14</td>
<td>1,18</td>
<td>1,21</td>
<td>1,24</td>
<td>1,27</td>
<td>1,30</td>
<td>1,33</td>
<td></td>
</tr>
</tbody>
</table>

Pressure Dewpoint

<table>
<thead>
<tr>
<th>°C</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_f</td>
<td>1,00</td>
<td>1,09</td>
<td>1,19</td>
<td>1,37</td>
</tr>
</tbody>
</table>

Temperature of ambient air, only for air-cooled dryers

<table>
<thead>
<tr>
<th>°C</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_u</td>
<td>1,00</td>
<td>0,96</td>
<td>0,90</td>
<td>0,82</td>
<td>0,72</td>
<td>0,60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compressed air inlet temperature

<table>
<thead>
<tr>
<th>°C</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_u</td>
<td>1,20</td>
<td>1,12</td>
<td>1,00</td>
<td>0,83</td>
<td>0,69</td>
<td>0,59</td>
<td>0,50</td>
<td>0,44</td>
<td>0,39</td>
<td>0,37</td>
</tr>
</tbody>
</table>
Benefits of the new Buran range

Features and Benefits

Integrated pre- and post-filter (BURAN AB series)
- Pre-filter type V protects the air heat exchanger from oil and particle contamination
- Post-filter UltraPleat M meets specified compressed air quality requirements
- High separation efficiency of filter at low pressure drop
- No additional installation effort for pre- and post-filter required

High Overload Capacity
- In case of overload, the dryer will only switch off at a dewpoint above approx. +20 °C

Integrated Alarm Signal
- Economical operation and safe system installation in the compressed air network.
- Connection to higher-level control possible

Electronic level controlled Condensate Drain
- No compressed air losses due to condensate removal

Compact & user-friendly
- Compact plug & play design
- Achievable compressed air quality according to ISO 8573-1:2010 (2:4:2) (with usual impurity of compressed air)
- Energy savings through low differential pressure
- Easy to service concept (service kits, service display, easy access to components within the housing)

Aluminium Heat Exchanger
- Low operating costs due to marginal compressed air losses
- No corrosion inside the heat exchanger due to contact with wet compressed air

Hotgas Bypass Control (BURAN AB series)
- Proven and reliable technology with easy handling
- Constant dewpoint even with changing loads

Energy-saving control (BURAN AES series)
- Dewpoint controlled switch

Increase of the Compressed Air Quality with Filtration
With a pre- and post-filter the quality of the compressed air is further increased.
The filter protects the dryer by separating liquid water, particles and oil.
The post-filter meets the specified compressed air quality according to ISO 8573-1:2010 which is required for the application.

Increase of the Compressed Air Quality with Filtration

Compressor
Aftercooler
Cyclone Separator
Air Receiver Vessel
Pre-filter DF-V*
Dryer Buran
Post-filter DF-M*
Refrigeration Compressed Air
Buran with integrated filters*

*validated according to ISO 12500-1
Service with highest Expectations
Our service is always nearby! With our technical service and support network throughout Europe, we can routinely service your production systems as well as provide on-site support whenever needed.

With one of our service centers you receive quick, cost-effective and competent services for all filtration applications from one source.

The Solution for high Volume Flows
Donaldson offers a comprehensive range of refrigeration compressed air dryers to meet your specific needs. For high volume flows our engineering team developed an individual solution, which is tailored to your operating parameters and fulfills highest requirements with regard to energy efficiency.

In addition to our Buran refrigeration compressed air dryers, the Boreas (1,260 to 21,000 m³/h) and Brisa (10,500 to 50,000 m³/h) range are available for this purpose.

Total Filtration Management
Donaldson offers a wide variety of solutions to reduce your energy costs, improve your productivity, guarantee production quality and help protect the environment.

Total Filtration Service
A comprehensive range of services especially designed to keep your production at peak performance and at the lowest total cost of ownership.

Please contact us:
Donaldson Europe BV
Research Park Building No. 1303 · Interleuvenlaan 1
B-3001 Leuven · Belgium
Phone +32(0)16 38 38 11 · Fax +32(0)16 40 00 77
CAP-europe@donaldson.com · www.donaldson.com