

Compressed Air Filtration

AG / SG / HD

Tiefenfilter / Koaleszenzfilter /

Partikelfilter

UltraPleat® FF

HERAUSRAGENDE MERKMALE

- Koaleszenzfilter / Partikelfilter zur Rückhaltung von Öl- und Wasseraerosolen sowie Feststoffpartikel aus Druckluft oder Gasen im industriellen Einsatzbereich
- Innovative Filtrationstechnologie UltraPleat®; plissierte Hochleistungs Filtermedien (ölabweisend / wasserabweisend) zur Erzielung hoher Abscheideleistungen bei niedrigem Differenzdruck
- Validierte Leistungsdaten nach ISO 12500; zuverlässiges Erreichen der Druckluftqualität nach ISO 8573-1
- Strömungsoptimiertes Design, geringer Druckverlust für eine wirtschaftliche Druckluftaufbereitung (Einsparung von Energiekosten)

Tiefenfilter UltraPleat® FF

INDUSTRIEN

• Chemische und pharmazeutische Industrie

Leiterplatten und CD-Herstellung

Oberflächenveredelung

• Maschinen- und Anlagenbau

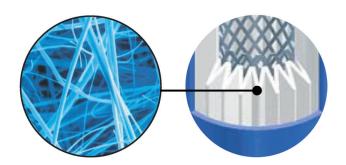
Energieversorgung

Donaldson Filtration Deutschland GmbH

Büssingstr. 1 D-42781 Haan

Tel.: +49 (0) 2129 569 0 Fax: +49 (0) 2129 569 100 E-Mail: CAP-de@donaldson.com Web: www.donaldson.com

PRODUKTBESCHREIBUNG


Die Filterelemente UltraPleat® FF sind für die Aufbereitung von Druckluft oder Gasen im industriellen Einsatzbereich vorgesehen.

Die spezifizierten Leistungsdaten zur Erzeugung der Druckluftqualitätsklassen nach ISO 8573-1 wurden nach ISO 12500-1 (Ölabscheidung) und ISO 12500-3 (Partikelabscheidung) validiert.

Durch ein strömungsoptimiertes Design des Filterelementes sowie durch das eingesetzte Filtermedium und die angewendete Fertigungstechnologie werden der Differenzdruck minimiert und kontinuierlich hohe Abscheideleistungen gewährleistet.

Die Filterelemente UltraPleat® FF besitzen ein dreidimensionales Mikrofaservlies aus beschichteten Borosilikat-Glasfasern, welches öl- und wasserabweisend wirkt.

Unter Ausnutzung verschiedener Filtrationsmechanismen, wie Abscheidung durch Aufprall, Siebeffekt und Diffusion werden Flüssig- und Festkörperschwebstoffe bis zu 0,01 µm Größe im Filter zurückgehalten..

Querschnitt durch den Tiefenfilter mit REM-Aufnahme des Filtermediums

Querschnitt durch den Tiefenfilter

Typische Anwendungen für das UltraPleat® FF Filterelement sind:

• Zentrale Druckluftaufbereitung:

Vorfilter zum Schutz von Kälte- und Adsorptionstrocknern, Anwendungen mit hohem Partikelanfall

• Endstellenanwendungen:

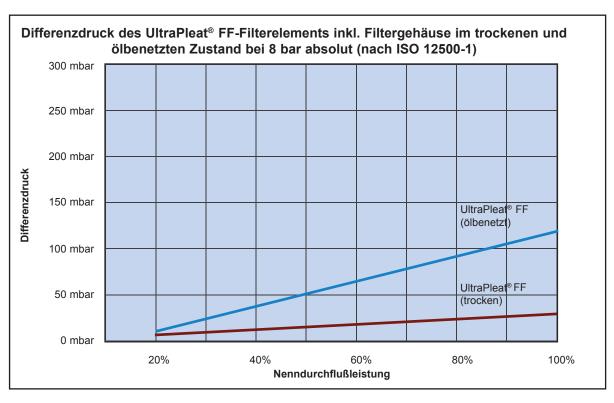
Endstufen-Filtration für Steuerungs-/ Instrumenten - und Prozessluft

Adsorptionstrockner / Aktivkohleadsorber:

Partikelfilter zur Rückhaltung von Adsorbensabrieb

• Automobilindustrie:

Aufbereitung von Druckluft für Lackieranwendungen


PRODUKTSPEZIFIKATIONEN

Merkmale	Nutzen					
UltraPleat® Technologie	Erzielung höchster Abscheideleistung für Öl- und Wasseraerosole sowie Feststoffartikel bei niedrigstem Differenzdruck					
Validierte Leistungsdaten nach ISO 12500-1 und ISO 12500-3	Zuverlässiges Erreichen der Druckluftqualität nach ISO 8573-1					
Intelligentes Gesamtkonzept	Baureihenabstufung, Filterfeinheiten und Abscheidegrade sowie verwendete Materialien optimal auf die Anforderungen der industriellen Druckluftaufbereitung abgestimmt					
Strömungsoptimiertes Design	Geringe Druckverluste, dadurch Einsparung von Energiekosten					
Filtermedium plissiert	Hohe Schmutzaufnahmefähigkeit durch größtmögliche Filterfläche bei geringstem Druckverlust					
Koaleszenzmantel durch äußeren Stützmantel fixiert	Strömungsquerschnitt zwischen Element und Gehäuse jederzeit sichergestellt; Optimierte Drainagefunktion durch dauerhaft stabile Struktur des Koaleszenzmantels					
Stützmantel aus Edelstahl-Streckmetall	Absicherung des Filtermediums gegen Druckstöße. Geringer Druckverlust durch große freie Querschnittsfläche					
Verwendung von Edelstahlmaterial in Verbindung mit Aluminium	Guter Korrosionsschutz und hohe Temperaturbeständigkeit					

Materialien						
Filtermedium	Borosilikat-Glasfaservlies					
Koaleszenzmantel	Polyestervlies					
Stützmäntel - innen und aussen	Edelstahl 1.4301 / 304					
Endkappen	Aluminium					
O-Ringe	NBR: Silikon - und trennmittelfrei (Standard)					
Vergussmasse	Polyurethan					
Validierung						
Validierung der Hochleistungsfilterelemente nach ISO 12500-1 und ISO 12500-3						

UltraPleat® FF

LEISTUNGSDATEN

Betriebsüberdruck bar ü	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Umrechnungsfaktor fp	0,25	0,38	0,50	0,63	0,75	0,88	1,00	1,13	1,25	1,38	1,50	1,63	1,75	1,88	2,00	2,13

Elemente- Typ	Nenndurchflußleistung bei 7 bar ü m³/h*	Auslegungsbeispiel für vom Nenndruck abweichenden Druck
02/05	20	
03/05	40	V _{nom} = 192 m³/h, Betriebsdruck = 9 bar (ü)
03/10	60	$V_{korr} = \frac{V_{nom}}{f_D}$
04/10	90	v korr fp
04/20	120	$V_{\text{kerr}} = \frac{192 \text{ m}^3/\text{h}}{1.05} = 153,6 \text{ m}^3/\text{h}$
05/20	180	$V_{korr} = \frac{152 \text{ m}}{1,25} = 153,6 \text{ m}^3/\text{h}$
05/25	270	
07/25	360	Berechnete Größe: Typ 05/20
07/30	480	Defectifiede Große. Typ 03/20
10/30	720	
15/30	1080	
20/30	1440	
30/30	1920	
30/50	2880	

 $^{^{\}star}$ m³ bezogen auf 1 bar abs. und 20°C

ZERTIFIKAT

Werksbescheinigung

nach DIN EN 10204 2.2

Bestätigung der Auslegungs-und Leistungsdaten mit Werkszeugnis. Die Ergebnisse der Typprüfungen (Validierungen) sind im folgenden aufgelistet.

Filter Typ	Ultra	Pleat® FF		Filtergröße	02/05 - 30/50					
Abscheidung von Ölaerosolen nach ISO 12500-1										
Ölabscheidegrad Eintrittskonzentra	99%									
Poetälkonzontrat	Doubilly and a first interest of the second section with the section with the second section with the section with the second section with the second section with the second section with the section with the second section with the section will be section with the section with the section with the section									
Restolkonzential	Restölkonzentration bei Eintrittskonzentration von 3 mg/m³									
	Abscheidung von Partikeln nach ISO 12500-3									
Partikel- durchmesser	unterer	0,19	0,24	0,36	0,52	0,81	1,16			
[µm]	oberer	0,24	0,36	0,52	0,81	1,16	1,78			
Partikelabscheidegrad bei 8 bar absolut [%]			99,6 99,98		99,993	99,998	99,999			
Partikelabscheid Partikeldurchmes	•	99,999%								

20-7-2

Wolfgang Bongartz

Product Line Manager Industrial
Donaldson Filtration Deutschland GmbH